Info Jakarta

pusat informasi di kota jakarta

Menu

DASAR PETA dan PEMETAAN

Mar
22
2012
by : PakdheBudi Kayamara. Posted in : Post

 

PRINSIP DASAR PETA DAN PEMETAAN
STANDAR KOMPETENSI
  1. Mempraktekkan ketrampilan dasar peta dan pemetaan
KOMPETENSI DASAR
  1.1 Mendeskripsikan prinsip-prinsip dasar peta dan pemetaan
 INDIKATOR
1. Menjelaskan pengertian peta
2. Membedakan prinsip dasar pemetaan
3. Menghitung jarak dengan menggunakan skala peta
4. Menentukan skala peta suatu peta
5. Melalui suatu peta, dapat menentukan bentuk proyeksi peta

MATERI PETA

  PengertianPeta :
  gambaran seluruh atau sebagian permukaan bumi pada bidang datar yang diperkecil dengan menggunakan skala tertentu.Sedangkan ilmu yang mempelajari peta disebut kartografi
 
Menurut ICA (International Cartographic Assosiation), peta adalah gambar konvensionalyang dinormalisasidalam skala, biasanya dalam bentuk bidang datar dan dari data yang dipilih mengenai pemandanganabstrak yang berhubungandengan permukan bumi dan atau keadaan di dalam bumi.
Secara umum yang dimaksud peta adalah gambar konvensional secara selektif  dari permukaan bumi dengan segala fenomenanya sebagaimana terlihat dari atas, di buat pada bidang datar, diperkecil dalam skala, ditambah tulisan atau simbol sebagai tanda pengenal (identitas).

JENIS-JENIS PETA

Berdasarkan skalanya, peta dikelompokkan menjadi 5:
1.Peta Kadaster, yaitu peta yang berskala 1 : 100 sampai  1 : 5000.
2.Peta skala besar yaitu peta berskala 1 : 5000 sampai 1 : 250.000
3.Peta Skala Sedang yaitu peta berskala 1 : 250.000 sampai 1 : 500.000
4.Peta SkalaKecil yaitu peta berskala 1 : 500.000 sampai 1 : 1.000.000.
5.Peta Geografi yaitu peta berskala lebih kecil dari 1 : 1.000.000.

Berdasarkan isinya peta dibedakan 2:
1.  Peta Umum/Peta Ikhtisar yaitu peta yang menggambarkan segala sesuatu yang ada dalam suatu daerah/wilayah secara umum. Peta umum dikelompokkan menjadi 3 yaitu:
  a.  Peta Topografi, yaitu peta berskala besar yang   menggambarkan   relief permukaan bumi.
  b.  Peta Chorografi yaitu peta berskala sedang sampai   kecil yang   menggambarkandaerah luas.
  c.  Peta dunia yaitu peta berskala kecil yang   menggambarkan   sebagian/seluruh permukaan bumi.
2.  Peta Khusus/Peta Tematik yaitu peta yang menggambarkan kenampakan tertentu saja. Misalnya: Peta Curah hujan, Peta Penggunaan Lahan, Peta Politik, Peta Pariwisata, Peta Geologi, Chart dan lain-lain. 

Berdasarkan keadaan obyeknya, peta dibedakan menjadi 2: yaitu:
1.  Peta dinamik yaitu peta yang menggambarkan fenomena/data yang labil (cepat berubah). Data sosial bersifat labil. Misalnya: Peta Permukiman, dan Peta Transmigrasi.
2. Peta Stasioner yaitu peta yang mnggambarkan fenomena/data yang statis (tidak cepat berubah). Data alami bersifat statis. Misalnya: Peta Tanah dan Peta Wilayah.

Berdasarkan tujuannya, peta
dibedakan 7:
1.  Peta Pendidikan (Educational Map)
2.Peta Ilmu Pengetahuan (Science Map)
3.Peta Informasi Umum (General Information Map)
4.Peta Turis (Tourism Map)
5.Peta Navigasi (Navigation Map)
6.Peta Aplikasi (Technical Application Map)
7.Peta Perencanaan (Planning Map)  
Peta memiliki syarat-syarat yang harus dipenuhi yaitu :
  Peta harus dilengkapi dengan unsur/komponen peta, seperti : judul, garis astronomi, inset lokasi, garis tepi, skala peta, sumber, tahun pembuatan, orientasi peta, warna, legenda, tulisan, dan proyeksi peta yang disebut dengan komponen atau unsur peta 
 KOMPONEN PETA :
  1. Judul Peta
      Peta harus diberi judul atau identitas yang mencerminkan isi   peta.
 
  2. Mata Angin ( Petunjuk Arah )

  Mata angin harus dicantumkan dalam peta untuk mengetahui arah utara, selatan,barat, dan timur pada peta.
3. Skala Peta
Skala peta menunjukkan perbandingan antara jarak sebenarnya dan jarak pada peta. Penulisan skala dapat berupa skala angka atau skala grafis.
 
Contoh skala angka adalah 1 : 50.000 , artinya 1 cm pada peta sama dengan50.000 cm atau 0,5 km dilapangan
4. Simbol
  merupakan tanda untuk menggambarkan ( melambangkan ) kenampakan atau objek dan letaknya di permukaan bumi dalam peta. 
5. Legenda
  Legenda menjadi kunci untuk membaca peta karena berisi keterangan simbo-simbol yang terdapat dalam peta. Legenda biasanya diletakkan dibagian kiri atau kanan bawah peta di sebelah dalam garis tepi.
6. Garis Tepi
  merupakan garis untuk membatasi ruang peta, umumnya berbentuk persegi empat.
  7. Garis Astronomis
  Garis astronomis terdiri atas garis lintang dan garis bujur. Garis-garis itu berguna untuk mengetahui posisi absolut suatu objek pada peta utama. Tanda – tanda koordinat garis astronomis umumnya digambarkan dengan garis – garis pendek memotong garis tepi. 
8. Sumber Peta
   Contoh :Badan Koordinasi Survei dan Pemetaan Nasional (BAKOSURTANAL), Jawatan Topografi Angkatan Darat, Serta Badan Pertahanan Nasional.

9. Tahun Pembuatan
Tahun pembuatan peta berguna untuk mengetahui waktu peta itu dibuat. Tahun pembuatan peta penting untuk dicantumkan khususnya pada peta yang sifat datanya selalu mengalami perubahan.

10. Tulisan/Lettering
Yaitu tulisan atau angka yang tertera di peta.

Judul
SKALA DAN
PROYEKSI
Penulis: Drs. Sutama
Penyunting Materi: Drs. Eko Tri Rahardjo, M.Pd.
Penyunting Media: Drs. PC. Sutisno

 

 
DAFTAR ISI
IDENTITAS
DAFTAR ISI
PENDAHULUAN
Kegiatan Belajar 1: SKALA PETA …………………………………………………………………. 5
Petunjuk ………………………………………………………………………….. 5
Uraian Materi …………………………………………………………………… 5
TUGAS KEGIATAN 1 ………………………………………………………… 12
Kegiatan Belajar 2: PROYEKSI PETA ……………………………………………………………… 13
Petunjuk ………………………………………………………………………….. 13
Uraian Materi …………………………………………………………………… 13
TUGAS KEGIATAN 2 ………………………………………………………… 27
PENUTUP ……………………………………………………………………………………………………… 29
KUNCI KEGIATAN …………………………………………………………………………………………. 30
DAFTAR ISTILAH ………………………………………………………………………………………….. 32
DAFTAR PUSTAKA ……………………………………………………………………………………….. 32
3
PENDAHULUAN
Pertama-tama saya ucapkan selamat karena Anda telah selesai mempelajari modul tentang
Pengetahuan Peta. Saya berharap agar pengetahuan yang telah Anda pelajari dapat dijadikan
dasar dalam mempelajari modul ini.
Modul ini akan membahas tentang SKALA dan PROYEKSI. Setelah selesai mempelajari
modul ini diharapkan Anda dapat menjelaskan pengertian Skala Peta dan Proyeksi Peta,
menjelaskan jenis-jenis proyeksi, menjelaskan ciri-ciri khusus tiap jenis proyeksi dan
menggambarkan jenis-jenis proyeksi.
Agar tujuan tersebut dapat tercapai maka Anda harus mempelajari materi pelajaran tentang
pengertian Skala dan proyeksi Peta, jenis-jenis skala, cara merubah skala, pengertian
proyeksi, jenis-jenis proyeksi dan gambar proyeksi peta.
Untuk mempercepat pemahaman materi sebaiknya Anda menggunakan Globe, Peta maupun
Atlas.
Apabila Anda tidak memiliki alat tersebut, silahkan berusaha meminjam ke SMU Induk.
Modul ini terdiri dari dua kegiatan: Kegiatan 1; membahas tentang Skala Peta. Kegiatan 2;
membahas tentang Proyeksi Peta.
Waktu untuk mempelajari modul ini 4 x 45 menit termasuk waktu untuk mengerjakan soalsoal
latihan.
Apabila Anda menemui kesulitan dalam mempelajari modul ini silahkan diskusikan dengan
teman-teman Anda atau langsung bertanya kepada guru.
Kerjakan tugas-tugas yang terdapat disetiap akhir kegiatan, setelah itu cocokkan jawaban
Anda dengan kunci tugas yang terdapat pada halaman akhir modul ini. Mengingat waktu
yang terbatas, segeralah Anda pelajari modul ini.
Selamat belajar, semoga Anda sukses!
4
5
Kegiatan Belajar 1
SKALA PETA
Setelah selesai mempelajari kegiatan belajar 1 diharapkan Anda dapat:
a. menjelaskan pengertian skala peta;
b. menjelaskan macam-macam skala peta;
c. merubah skala peta;
d. menentukan skala untuk peta yang tidak memiliki skala.
Skala Peta
Pernahkah Anda menggunakan peta untuk menentukan jarak antara dua kota
atau dua tempat? Setelah letak dua kota ditemukan, apa langkah selanjutnya?
Tentunya, Anda akan melihat skala peta, bukan?
Skala Peta merupakan komponen peta yang sangat penting karena dengan skala peta kita
dapat mengetahui jarak antara dua tempat.
Skala Peta adalah perbandingan antara jarak di peta dengan jarak sebenarnya dipermukaan
bumi.
Contoh:
Pada peta tertulis skala 1 : 1.000.000 ini berarti tiap jarak 1 bagian di peta sama dengan
jarak 1.000.000 bagian di muka bumi.
Jadi kalau di peta itu 1 bagian = 1 cm maka di muka bumi = 10 Km.
Ukuran jarak yang digunakan dalam peta yaitu cm, m, km, inci dan mil. Untuk Indonesia
satuan yang umum dipakai cm, m, atau km.
Setiap peta hendaknya mencantumkan skalanya agar pembaca dapat menghitung dan
memperkirakan perbesaran pada keadaan yang sebenarnya.
Skala Peta dibedakan menjadi 3 macam, yaitu:
1. Skala Angka/Skala Pecahan (Numerical Scale).
Skala ini sering disebut skala numeric yaitu skala yang dinyatakan dalam bentuk
perbandingan angka.
Contoh:
Skala 1 : 100.000, skala 1 : 2.000.000 dan sebagainya Bila peta berskala 1 : 100.000
berarti tiap satuan panjang pada peta menggambarkan jarak yang sesungguhnya di
lapangan/ di muka bumi sebenarnya 100.000 kali satu satuan panjang di peta. Bila satuan
panjang menggunakan cm berarti tiap jarak 1 cm pada peta menggambarkan jarak
100.000 di lapangan.
Contoh negara yang menggunakan sistem skala angka ini adalah Indonesia dan Amerika
Serikat. Untuk menentukan skala peta ini dapat dipakai rumus:
Jarak di peta
Skala Peta = ––––––––––––––
Jarak sebenarnya
6
2. Skala Verbal yaitu skala yang dinyatakan dengan kalimat atau kata-kata.
Skala ini disebut juga skala inci dibanding mil yang dalam bahasa Inggris disebut “Inch
Mile Scale”.
Contoh:
Skala dalam suatu peta dinyatakan dalam 1 inch to 5 miles, ini berarti jarak 1 inci di peta
menggambarkan jarak 5 mil di lapangan atau jarak sebenarnya.
3. Skala Garis (Line Scale)/Skala Grafik (Graphical Scale) / Skala Batang (Bar Scale)/
Skala Jalan (Road Scale)
Untuk skala ini dinyatakan dalam bentuk garis lurus yang terbagi dalam beberapa bagian
yang sama panjangnya.
Pada garis tersebut harus dicantumkan ukuran jarak yang sesungguhnya di lapangan,
misalnya dalam meter, kilometer, feet atau mil.
Contoh:
a)
Dengan penyajian grafik tersebut maka dapat dibaca bahwa jarak antara dua angka
di peta = 1 km di lapangan, jadi kalau antara 0 – 1, 1 – 2, 2 – 3, 3 – 4, 4 – 5 masingmasing
= 1cm maka artinya 1 cm pada peta = 1 km di lapangan.
b)
Dari grafik tersebut dapat dibaca bahwa tiap jarak 1 inci pada peta sama dengan 2 mil di
lapangan. Skala garis ini pada umumnya digunakan apabila suatu peta akan dikecilkan
atau akan dibuat ukuran tertentu. Dengan memakai skala grafik/garis maka jarak dua
tempat dapat langsung diukur dalam peta. Tidak jarang dalam satu peta dicantumkan
skala angka dan juga skala garis.
Sampai disini apakah Anda dapat memahami? Selanjutnya, dalam pembahasan skala
peta yang harus Anda ingat adalah semakin besar skalanya, akan semakin kecil
kenampakkan wilayah yang digambarkan. Sebaliknya semakin kecil skalanya semakin
luas areal kenampakkan permukaan bumi yang yang tergambar dalam peta.Untuk
memahami skala termasuk besar atau kecil dapat dicontohkan sebagai berikut:
– Skala 1 : 50.000 lebih besar dari 1 : 100.000
– Skala 1 : 200.000 lebih besar dari 1 : 2.000.000
– Skala 1 : 250.000 lebih kecil dari 1 : 50.000
0 2 4 mil
0 1 2 3 4 5
km
7
Gambar 03.01. Contoh peta yang berbeda skala
Perlu Anda pahami juga bahwa jenis skala peta yang ada dapat diubah sesuai dengan
keinginan dan kebutuhan. Lalu bagaimana cara merubahnya?Untuk merubah skala peta
ada beberapa cara seperti:
1. Mengubah skala angka ke skala grafik
Contoh:
Dalam peta tertulis skala 1 : 300.000, ubahlah ke dalamskala grafik/garis.
Penyelesaian:
Skala 1 : 300.000 berarti 1 bagian di peta menunjukkan 300.000 bagian di lapangan.
Apabila dibuat dalam cm, maka 1 cm di peta = 300.000 cm di lapangan. Bila dibuat skala
grafiknya berarti tiap-tiap cm atau dalam satu kotak nilainya 300.000 cm atau 3 km.
Bila digambarkan skala grafiknya sebagai berikut:
2. Mengubah skala garis menjadi skala angka
Contoh:
Skala garis digambarkan seperti di bawah ini, ubahlah menjadi skala angka!
Penyelesaian:
Pada peta dengan skala ini berarti tiap panjang garis (kotak) menggambarkan 2 km di
lapangan sehingga apabila tiap kotak antara 0 –. 2 – 4 dan 4 – 6 masing-masing jika
diukur = 2 cm maka:
2 cm = 2 km
1 cm = 1 km
1 cm = 100.000 cm
Sehingga skala angkanya menjadi 1 : 100.000
Skala kecil 1 : 190.080
Perhatikan daerah yang diarsir.
Skala menegah 1 : 63.360
Bandingkan daerah yang diarsir
dengan gambar pertama.
Skala besar 1 : 21.120
Daerah yang diarsir tidak tergambar
semua dengan skala besar ini.
Peta skala kecil Peta skala sedang/menengah Peta skala besar
PAGE COURT
ARLENE AVENUE
DEBORAH DRIVE
1 cm 1 cm 1 cm
0 3 6 9km
0 2 4 6
km
8
3. Mengubah skala angka menjadi skala inci – mil
Contoh:
Skala angka 1 : 500.000, ubahlah menjadi skala inci-mil!
Penyelesaian:
Skala 1 : 500.000 ini berarti tiap 1 inci = 500.000 inci di lapangan.
500.000 inci dijadikan mil =
500.000
63.360
= 7,89, yang kemudian dibulatkan menjadi 8 mil.
Jadi skala inci-milnya = 1 : 8
Perlu Anda ingat bahwa!
1 mil = 63.360 inci
1 inci =
1
63.360
mil
1 inci = 2,54 cm = 0,0254 m
1 meter = 39, 37 inci
1 km = 0,62137 mil
4. Mengubah skala grafik menjadi skala mil-inci
Contoh:
Jika diketahui grafik sepanjang 5 cm menunjukkan jarak 10 mil di lapangan, ubahlah
menjadi skala angka dan inci-mil!
Penyelesaian:
5 cm = 10 mil dijadikan inci terlebih dahulu sehingga 5 cm =
5
1,54
= 1,968 = 2 cm
(dibulatkan). Berarti 2 inci = 10 mil di lapangan. Jadi 1 inci sesuai dengan 5 mil dilapangan
oleh karena itulah skalanya 1 : 5.
Bila diubah ke dalam bentuk skala angka sebagai berikut:
1 inci = 5 mil yang berarti 5 x 63.360 = 316.800 inci
Jadi skala angkanya 1 : 316.800
5. Mengubah skala dengan sistem grid bujur sangkar (Gridsquare)
Sistem grid bujur sangkar disebut juga metode Union Jack
Contoh:
Peta dengan skala 1 : 200.000 ubahlah menjadi peta berskala 1 : 100.000
Penyelesaian:
x = 200.000
100.000
x 1 cm = 2 cm
9
Bila digambarkan bentuk petanya sebagai berikut:
Sampai disini apakah Anda sudah memahami? Bila belum, ulangi lagi membaca materi
kegiatan 1 di atas!
Dalam kehidupan sehari-hari sering kita menjumpai peta yang tidak ada skalanya, padahal
mungkin kita membutuhkannya. Apabila Anda mengalami kejadian ini maka cara menentukan
skala peta dengan langkah-langkah sebagai berikut:
1. Membandingkan dua jarak tempat di peta dengan jarak kedua tempat di lapangan
Contoh:
Jarak antara Jakarta dan Bekasi di lapangan 20 km (2.000.000 cm). Di peta jarak keduanya
50 cm. Tentukan skala petanya!
Jawab:
Skala peta tersebut = 2.000.000
50
= 40.000
Sehingga skala petanya = 1 : 40.000.
Membandingkan dengan peta lain yang luasnya sama dan telah diketahui skalanya.
Contoh:
– Ukur jarak 2 tempat yang diketahui dalam kedua peta itu.
Peta I = jarak A – B = 20 cm
Peta II = jarak A – B = 4 cm
Skala 1 : 200.000
Skala 1 : 100.000
1
2
A B
1 : x 1 : 50.000
Peta I. Peta II.
A B
20 cm
4 cm
10
– Pada peta I jarak A – B dilapangan:
= 2 x 50.000 cm = 100.000 cm
– Pada peta I jarak AB = 20x
x cm = 20x cm
20x = 200.000 cm
x = 10.000 cm
Jadi skala peta I = 1 : 10.000
Dari penyelesaian contoh soal tersebut dapat dibuat kesimpulan rumusan sebagai berikut:
P2 =
J x P
J2
1 1
J1 = Jarak yang sudah diketahui skalanya
J2 = Jarak yang belum diketahui skalanya
P1 = Penyebut skala peta yang sudah diketahui
P2 = Penyebut skala peta yang dicari
Bila data-data soal di atas dimasukkan ke rumus diperoleh:
P2 = 4 x 50.000
20
= 200.000
20
= 10.000
Jadi skala petanya = 1 : 10.000
3. Membandingkan kenampakan-kenampakan dalam peta yang sudah pasti
ukurannya.
Contoh:
Dalam peta terdapat lapangan sepak bola panjang lapangan 100 meter = 10.000 cm.
Jadi skala lapangan sepak bola tersebut 1 : 10.000
4. Menentukan dua titik di peta yang belum ada skalanya (peta x) misalnya titik A – B
dengan arah Utara – Selatan.
Setelah itu menghitung jarak dua titik dan selisih derajat garis lintangnya. Perlu Anda
ingat bahwa jarak tiap 10 garis lintang = 111 km dan 10 = 60 detik
Contoh:
Jarak A – B di peta x = 50 cm
Selisih garis lintangnya = 30 detik
Berapa skala peta x?
Penyelesaian:
30 detik = 30
60
x 111 km = 55,5 km = 5.550.000 cm
50 cm di peta x = 5.550.000 cm di lapangan
Skala di peta x = 50 : 5.550.000
Jadi skala peta = 1 : 1.110.000
11
5. Pada peta Topografi (peta Kontur) di Indonesia berlaku rumus:
CI = 1
2000
x penyebut skala
CI (Contour Interval) adalah selisih ketinggian antara dua garis kontur yang dinyatakan
dalam meter. Contour Interval sering disebut jarak antara garis kontur. Garis Kontur yaitu
garis-garis pada peta yang menghubungkan titik-titik yang memiliki ketinggian yang sama
dari permukaan air laut.
Perhitungan CI misalnya:
Pada peta kontur Indonesia yang berskala 1 : 100.000, berapakah CI nya?
Jawab: CI = 1
2000
x 100.000 = 50 meter
Kembali ke contoh peta kontur yang belum ada skalanya!
Contoh:
Suatu peta kontur dengan Ci = 50 meter
Berapakah skala peta tersebut!
Jawab: Ci = 50 m
50 = 1
2000
x Penyebut skala
Jadi penyebut skala = 100.000, ini berarti skala peta kontur tersebut 1 : 100.000
Apabila Anda ingin mengukur jarak pada peta baik lurus atau berbelok-belok, lakukanlah
hal-hal berikut:
a. Gunakan seutas benang yang agak besar (misal: benang kasur)
b. Berilah tanda pada peta di bagian yang diukur.
c. Ukurlah dengan benang yang sudah dipersiapkan.
d. Tekuklah benang mengikuti jarak obyek yang diukur, seperti jalan yang berbelok,
benang juga harus ikut dibelokkan.
e. Jarak yang diukur pada peta misalnya 50 cm (antara kota A dengan kota B).
f. Sesuaikan dengan skala garis misalnya skala yang ada 1 : 50.000, maka jarak antara
kota A dan B dilapangan = 50 cm x 50.000 = 2.500.000 cm = 25 km.
Gambar 03.02. Cara mengukur jarak berbelok-belok dengan seutas benang.
Sampai disini apakah Anda sudah memahami materi tentang skala peta. Apabila sudah
memahami segeralah mengerjakan tugas 1.
Selamat belajar.
= Benang
12
KEGIATAN 1
Jawablah pertanyaan di bawah ini dengan singkat dan jelas!
1. Apa arti skala 1 : 50.000 pada peta?
2. Tulislah rumus untuk menentukan skala peta secara umum!
3. Berikan contoh skala verbal dan contoh negara mana yang mempergunakan skala ini!
4. Manakah yang lebih besar antara skala 1 : 25.000 dengan 1 : 50.000?
5. Ubahlah skala angka 1 : 250.000 menjadi skala inci-mil !
6. Jarak antara dua kota di peta 25 cm sedangkan jarak sebenarnya 10 km. Tentukan
skala petanya !
7. Suatu peta dengan contour interval 25 meter. Berapa skala peta tersebut?
8. Sebutkan 3 jenis skala peta !
9. Apa dampak semakin besar skala terhadap kenampakan wilayah yang digambarkan?
10. Buatlah contoh skala garis atau grafis!
Setelah selesai mengerjakan tugas 1, cocokkanlah hasil jawaban Anda dengan kunci tugas
yang terdapat di halaman akhir modul ini. Nilai tiap soal yang dijawab benar yaitu 1 (satu).
Bila nilai Anda lebih besar atau sama dengan 7, maka dipersilahkan segera mempelajari
kegiatan 2. Namun bila nilai Anda belum kurang dari 7, hendaknya Anda mengulangi
mempelajari materi pelajaran tentang skala peta.
13
PROYEKSI PETA
Setelah selesai mempelajari kegiatan belajar 2 ini, Anda diharapkan dapat:
a. menjelaskan pengertian proyeksi peta;
b. menyebutkan syarat-syarat proyeksi peta;
c. menjelaskan macam-maam proyeksi peta;
d. menentukan jenis proyeksi dalam menggambarkan peta.
Proyeksi Peta
Apabila Anda ingin menggambarkan perubahan benda yang berukuran tiga
dimensi ke benda yang berukuran dua dimensi, benda itu harus diproyeksikan
ke bidang datar.
Teknik proyeksi ini juga berlaku untuk memindahkan letak titik-titik pada permukaan bumi ke
bidang datar yag dinamakan PROYEKSI PETA.
Secara khusus pengertian dari proyeksi peta adalah cara memindahkan sistem paralel (garis
lintang) dan meridian (garis bujur) berbentuk bola (Globe) ke bidang datar (peta). Hasil
pemindahan dari globe ke bidang datar ini akan menjadi peta.Pemindahan dari globe ke
bidang datar harus diusahakan akurat. Agar kesalahan diperkecil sampai tidak ada kesalahan
maka proses pemindahan harus memperhatikan syarat-syarat di bawah ini:
1. Bentuk-bentuk di permukaan bumi tidak mengalami perubahan (harus tetap), persis
seperti pada gambar peta di globe bumi.
2. Luas permukaan yang diubah harus tetap.
3. Jarak antara satu titik dengan titik lain di atas permukaan bumi yang diubah harus tetap.
Di dalam proses pembuatan peta untuk dapat memenuhi ketiga syarat di atas sekaligus
adalah suatu hal yang tidak mungkin. Bahkan untuk dapat memenuhi satu syarat saja untuk
seluruh bola dunia juga merupakan hal yang tidak mungkin, yang bisa dipenuhi hanyalah
satu saja dari syarat-syarat di atas dan ini hanya untuk sebagian kecil dari muka bumi.
Anda paham penjelasan di atas? Belum? Baiklah!
Secara sederhana dapat dikatakan bahwa dalam membuat peta kita hanya dapat
menggambar beberapa bagian permukaan bumi. Untuk dapat membuat peta yang meliputi
wilayah yang lebih luas atau bahkan seluruh permukaan bumi. Untuk dapat membuat peta
yang meliputi wilayah yang lebih luas atau bahkan seluruh permukaan bumi kita harus
mengadakan kompromi antara ketiga syarat di atas. Sebagian dampak kompromi tersebut,
keluarlah bermacam-macam jenis proyeksi peta. Masing-masing proyeksi mempunyai
kelebihan dan kelemahan sesuai dengan tujuan peta dan bagian mukabumi yang
digambarkan.
Kegiatan Belajar 2
14
Bila diminta untuk memetakan seluruh permukaan bumi, maka Anda dituntut harus tepat
dalam memilih proyeksi yang digunakan. Pemilihan proyeksi tergantung pada:
– Bentuk, luas dan letak daerah yang dipetakan.
– Ciri-ciri tertentu/ciri asli yang akan dipertahankan.
Sekarang perhatikan terlebih dahulu gambar berikut ini!
Gambar 03.3. Prinsip proyeksi berupa pembuatan peta dari bentuk bola (globe)
ke bidang datar (peta)
Pada gambar 03.3 Anda dapat melihat perubahan bentuk dari segi empat pada globe:
Berubah menjadi: pada bidang datar.
A B
C
D
x
y
A B
C D
x
y
A B
C x D
y
x
y
C D
A B
15
Sebagai akibatnya dapat dilihat pada gambar 03.4 berikut ini.
Gambar 03.4 Globe dari irisan globe
Pada gambar 03.4 bagian tengah globe yaitu daerah sekitar garis khatulistiwa sedikit
mengalami distorsi (penyimpangan) sedangkan daerah kutub mengalami distorsi yaitu
menjadi lebih besar.
Proyeksi ini cocok untuk mempertahankan bentuk sekitar khatulistiwa.
Gambar 03.5 Proyeksi Peta a. zenithal b. kerucut c. silinder
Titik singgung antara permukaan bola bumi dan bidang datar dapat terletak pada kutub,
ekuator atau antara kutub dan ekuator.
Misalnya Anda akan memproyeksikan garis-garis meridian dan garis-garis lintang. Jika titik
singgung antara bidang datar dan permukaan bola bumi terletak di kutub utara, setelah
diproyeksikan garis lintang akan taampak sebagai lingkaran konsentris yang mengelilingi
kutub. Garis meridian akan tampak sebagai garis lurus yang berpusat di kutub dengan sudut
yang sama.
a b c
16
Perhatikan gambar berikut ini!
Gambar 03.6. Titik singgung proyeksi dan hasilnya
Pada gambar 03.6 Anda dapat melihat perubahan bentuk pada garis lingkaran terluar. Garis
tersebut lebih besar dari garis di globe. Jadi paling banyak mengalami distorsi. Pada bagian
kutub relatif tidak mengalami perubahan atau distorsi, jadi hampir mendekati kesesuaian.
Proyeksi ini cocok untuk mempertahankan bentuk sekitar kutub.
Macam-macam proyeksi peta
1. Berdasarkan sifat asli yang dipertahankan
a. Proyeksi Ekuivalen adalah luas daerah dipertahankan sama, artinya luas di atas
peta sama dengan luas di atas muka bumi setelah dikalikan skala.
b. Proyeksi Konform artinya bentuk-bentuk atau sudut-sudut pada peta dipertahankan
sama dengan bentuk aslinya.
c. Proyeksi Ekuidistan artinya jarak-jarak di peta sama dengan jarak di muka bumi
setelah dikalikan skala.
2. Berdasarkan Kedudukan Sumbu Simetris
a. Proyeksi Normal, apabila sumbu simetrisnya berhimpit dengan sumbu bumi.
b. Proyeksi Miring, apabila sumbu simetrinya membentuk sudut terhadap sumbu bumi.
c. Proyeksi Transversal, apabila sumbu simetrinya tegak lurus pada sumbu bumi atau
terletak di bidang ekuator. Proyeksi ini disebut juga Proyeksi ekuatorial.
3. Berdasarkan bidang asal proyeksi yang digunakan
a. Proyeksi Zenithal (Azimuthal), adalah proyeksi yang menggunakan bidang datar
sebagai bidang proyeksinya. Proyeksi ini menyinggung bola bumi dan berpusat pada
satu titik.
Untuk memperjelas silahkan perhatikan lagi gambar 03.5.
Proyeksi ini menggambarkan daerah kutub dengan menempatkan titik kutub pada
titik pusat proyeksi.
Equator
Kutub Utara
17
Ciri-ciri Proyeksi Azimuthal:
a. Garis-garis bujur sebagai garis lurus yang berpusat pada kutub.
b. Garis lintang digambarkan dalam bentuk lingkaran yang konsentris mengelilingi kutub.
c. Sudut antara garis bujur yang satu dengan lainnya pada peta besarnya sama.
d. Seluruh permukaan bumi jika digambarkan dengan proyeksi ini akan berbentuk
lingkaran.
Proyeksi Azimuthal dibedakan 3 macam, yaitu:
a. Proyeksi Azimut Normal yaitu bidang proyeksinya menyinggung kutub.
b. Proyeksi Azimut Transversal yaitu bidang proyeksinya tegak lurus dengan ekuator.
c. Proyeksi Azimut Oblique yaitu bidang proyeksinya menyinggung salah satu tempat
antara kutub dan ekuator.
Untuk memperjelas pemahaman, perhatikan gambar berikut ini!
Gambar 03.7 Proyeksi Azimuthal
Khusus proyeksi Azimut Normal cocok untuk memproyeksikan daerah kutub.
Perhatikan gambar berikut ini!
Gambar 03.8. Peta daerah kutub utara hasil proyeksi Azimuth Normal
abcd efg h
EKUATOR
KU
KS
KU
a b c d
e
f
g
h
a b c d e f g h
EKUATOR
E
KS
KU
Q
a
b
c
d
e
f
g
h
a b c d e f g h
E Q
KS
KU
EKUATOR
a
b
c d e
f g
h
a. Menyinggung kutub
(Azimuth normal)
b. Menyinggung ekuator
(Azimuth transversal)
c. Menyinggung antara
kutub dan ekuator
(Azimuth obligue)
L A U T A N
GREENLAND
(Denmark)
A R T I K
Greenland
Laut Laut Barent
Laut Karn
L a u t
L a p t ev
Laut Beaufort
KUTUB
UTARA
18
Karena proyeksi Azimuthal paling tepat untuk menggambarkan kutub, maka
penggambaran kutub melalui proyeksi ini dibedakan menjadi 3 macam yaitu:
1. Proyeksi Gnomonik
Pada proyeksi ini pusat proyeksi terapat di titik pusat bola bumi. Ekuator tergambar
hingga tak terbatas. Lingkaran paralel berubah ke arah luar mengalami
pembesaran yang cepat dan ekuator tidak mampu digambarkan karena
pembesaran tak terhingga tadi. Pada daerah lintang 45° akan mengalami
pembesaran 3 kali.
Perhatikan gambar dibawah ini!
Gambar 03.9. Proyeksi Azimuthal Gnomonik
Gambar 03.10. Lingkaran besar diproyeksikan sebagai garis lurus
30° 60°
60°
30°
0° 0°
30°
60°
90° 60° 30°
V
V. Di Pusat Lingkaran
BIDANG PROYEKSI
P
M
19
2. Proyeksi Azimuthal Stereografik
Titik sumber proyeksi di kutub berlawanan dengan titik singgung bidang proyeksi
dengan kutub bola bumi. Jadi jarak antara lingkaran paralel tergambar semakin
membesar ke arah luar.
Untuk lebih jelasnya perhatikan gambar berikut ini!
Gambar 03.11. Proyeksi Azimuthal Stereografik.
3. Proyeksi Azimuthal Orthografik
Proyeksi ini menggunakan titik yang letaknya tak terhingga sebagai titik sumber
proyeksi. Akibatnya sinar proyeksinya sejajar dengan sumbu bumi.
Lingkaran paralel akan diproyeksikan dengan keliling yang benar atau ekuidistan.
Jarak antara lingkaran garis lintang akan semakin mengecil bila semakin jauh
dari pusat.
0° 30° 60° 90°
30°

BIDANG PROYEKSI
V
V dititik lingkaran berlawanan
dengan Bidang Proyeksi
20
Gambar 03.12. Proyeksi Azimuthal Orthografik, hanya sesuai dekat pusat peta saja
b. Proyeksi Kerucut (Conical Projection), Proyeksi Kerucut yaitu pemindahan garisgaris
meridian dan paralel dari suatu globe ke sebuah kerucut.
Untuk proyeksi normalnya cocok untuk memproyeksikan daerah lintang tengah
(miring). Proyeksi ini memiliki paralel melingkar dengan meridian berbentuk jari-jari.
Paralel berwujud garis lingkaran sedangkan bujur berupa jari-jari.
Perhatikan Gambar berikut ini!
Gambar 03.13 Proyeksi Kerucut
0°30° 60° 90°
30°

BIDANG PROYEKSI
V di titik yang jauh
dari lingkaran
V
P
M
30
V
A B
A′ B′
V′
21
Gambar 03.14 Contoh Peta Hasil Proyeksi Kerucut
Proyeksi kerucut diperoleh dengan memproyeksikan globe pada kerucut yang
menyinggung atau memotong globe kemudian di buka, sehingga bentangnya
ditentukan oleh sudut puncaknya. Proyeksi ini paling tepat untuk menggambar daerah
daerah di lintang 45°.
Proyeksi kerucut dibedakan menjadi 3 macam yaitu:
1. Proyeksi kerucut normal atau standar
Jika garis singgung bidang kerucut pada bola bumi terletak pada suatu paralel
(Paralel Standar).
2. Proyeksi Kerucut Transversal
Jika kedudukan sumbu kerucut terhadap sumbu bumi tegak lurus.
3. Proyeksi Kerucut Oblique (Miring)
Jika sumbu kerucut terhadap sumbu bumi terbentuk miring.
a. Standart b. Transversal c. Oblique
Gambar 03.15 Proyeksi Kerucut
GREENLAND
(Denmark)
Teluk
Beffin
Selat Davis
Selat
Denmark
Bidang proyeksi
Bidang proyeksi
Bidang proyeksi
90°

Bidang proyeksi
90°
22
Dari gambar tersebut dapat dikemukakan ciri-ciri proyeksi kerucut antara lain:
1. Semua garis bujur merupakan garis lurus dan berkonvergensi di kutub.
2. Garis lintang merupakan suatu busur lingkaran yang konsentris dengan titik
pusatnya adalah salah satu kutub bumi.
3. Tidak dapat menggambarkan seluruh permukaan bumi karena salah satu kutub
bumi tidak dapat digambarkan.
4. Seluruh proyeksi tidak merupakan satu lingkaran sempurna, sehingga baik untuk
menggambarkan daerah lintang rendah.
c. Proyeksi Silinder atau Tabung
Proyeksi Silinder adalah suatu proyeksi permukaan bola bumi yang bidang
proyeksinya berbentuk silinder dan menyinggung bola bumi.
Apabila pada proyeksi ini bidang silinder menyinggung khatulistiwa, maka semua
garis paralel merupakan garis horizontal dan semua garis meridian merupakan garis
lurus vertikal.
Perhatikan gambar-gambar berikut ini!
Gambar 03.16 Proyeksi Silinder Murni
Gb. 03.17 Skema Proyeksi Silinder
Bidang Datar Menyinggung Khatulistiwa
75°
60°
45°
30°
15°

15°
30°
45°
60°
90°
0
75°
KU
KU
23
Gambar 03.18 Contoh peta hasil proyeksi silinder
Penggunaan proyeksi silinder mempunyai beberapa keuntungan yaitu:
1. Dapat menggambarkan daerah yang luas.
2. Dapat menggambarkan daerah sekitar khatulistiwa.
3. Daerah kutub yang berupa titik digambarkan seperti garis lurus.
4. Makin mendekati kutub, makin luas wilayahnya.
Jadi keuntungan proyeksi ini yaitu cocok untuk menggambarkan daerah ekuator,
karena ke arah kutub terjadi pemekaran garis lintang.
Proyeksi Azimuthal,proyeksi kerucut (conical) dan proyeksi silinder (cylindrical)
termasuk kelompok proyeksi murni. Penggunaan jenis proyeksi-proyeksi murni ini
sangat terbatas.
Nah sampai di sini apakah Anda telah memahami uraian di atas? Bila belum ulangi
sekali lagi membaca uraian materi di atas dan cobalah menggambarkan setiap jenis
proyeksi!
d. Proyeksi Gubahan (Proyeksi Arbitrary)
Proyeksi-proyeksi ini dipergunakan untuk menggambarkan peta-peta yang kita jumpai
sehari-hari, merupakan proyeksi atau rangka peta yang diperoleh secara perhitungan.
Contoh-contoh proyeksi gubahan antara lain:
1. Proyeksi Bonne (Equal Area)
Sifat-sifatnya sama luas. Sudut dan jarak benar pada meridian tengah dan pada
paralel standar. Semakin jauh dari meridian tengah, bentuk menjadi sangat
terganggu. Baik untuk menggambarkan Asia yang letaknya di sekitar khatulistiwa.
24
Gambar 03.19 Proyeksi Bonne
2. Proyeksi Sinusoidal
Pada proyeksi ini menghasilkan sudut dan jarak sesuai pada meridian tengah
dan daerah khatulistiwa sama luas. Jarak antara meridian sesuai, begitu pula
jarak antar paralel. Baik untuk menggambar daerah-daerah yang kecil dimana
saja.
Juga untuk daerah-daerah yang luas yang letaknya jauh dari khatulistiwa. Proyeksi
ini sering dipakai untuk Amerika Selatan, Australia dan Afrika.

artikel

INFORMASI BERMANFAAT UNTUK ANDA KUNJUNGI PUSAT BATIK MURAH BERKUALITAS DAN NYAMAN

BATIK INDOKABANA SEBAGAI PRODUSEN DAN PENJUALAN KAIN BATIK CAP DAN TULIS TERBAIK DAN MURAH

http://www.indokabana.com/

>>> GROSIR BAJU, KLIK DISINI <<<

KAIN-BAJU.COM SEBAGAI GROSIR KAIN DAN BAJU TERMURAH DAN BERSAHABAT MODEL UPDATE

TEMUKAN SOLUSI DAN DAPATKAN SEGERA, LENGKAP, KEBUTUHAN BAJU, KAIN & SERAGAM BATIK TERBAIK DAN MURAH

http://www.kain-baju.com/

>>> GROSIR BAJU, KLIK DISINI <<<

Bagikan:Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

Comment

loading...


bebas bayar, pembayaran mudah dan cepat, transaksi online, pembayaran tagihan dan tiket, transfer dana online bebas bayar, pembayaran mudah dan cepat, transaksi online, pembayaran tagihan dan tiket, transfer dana online

artikel lainnya DASAR PETA dan PEMETAAN

Saturday 11 February 2017 | Post

1. Valentine Days SALE – 8-10 Februari 2017 (3hari) @ Menara Jamsostek Jl Gatot Subroto –…

Saturday 13 May 2017 | Post

Ciputra Artpreneur akan menggelar even Wedding Fair, pada 13 – 14 Mei 2017 mendatang, bertempat di…

Friday 10 March 2017 | Post

Anak Pramuka pasti tahu apa itu persami. Persami adalah perkemahan sabtu minggu, kadang diadakan di sekolah…

Tuesday 20 June 2017 | Post

Mencari ruang hijau di Jakarta tidaklah mudah. Tapi, team JakartaYuk menemukan taman,ruang terbuka hijau,tempat untuk bersantai…